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Part 1:

The GVAR Modeling Framework
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A simple VARX* structure

At the core of the GVAR modelling framework lies a set of individual
VARX* models, combined in such a way to give rise to the global
VAR model.

Consider a set of countries i = 0, 1, 2, . . . ,N; with country 0 taken as
the reference country.

For country i , abstracting from deterministics and higher order lags,
consider the VARX ∗(1, 1) structure:

xit = Φixi ,t−1 + Λi0x
∗
it + Λi1x

∗
i ,t−1 + uit ,

xit : ki × 1 vector of domestic variables

x∗it : k
∗
i × 1 vector of foreign variables

where x∗it =
∑N

j=0 wijxjt ,wii = 0,
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A simple VARX* structure

with wij , j = 0, 1, . . . ,N a set of weights such that
∑N

j=0 wij = 1,

and uit are cross sectionally weakly correlated such that
uit =

∑N
j=0 wijujt

p→ 0, as N → ∞ (where
p→ denotes convergence in

probability).

The domestic and foreign variable vectors could contain, for example,
the following variables:

xit =

 yit
∆pit
ρSit

 , x∗it =

 y∗it
∆p∗it
ρS∗it


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A simple VARX* structure

where
yit = ln (GDPit/CPIit) ,

∆pit = pit − pi ,t−1, pit = ln (CPIit) ,

ρSit = 0.25 ln
(
1 + RS

it /100
)
,

GDPit is the nominal gross domestic product, CPIit the consumer
price index, RS

it is the annualized short rate, and

y∗it = ΣN
j=0wijyjt ,

∆p∗it = ΣN
j=0wij∆pjt ,

ρS∗it = ΣN
j=0wijρ

S
jt .
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Estimation of the individual VARX* models

For country i , consider the VARX∗(2, 2) structure

xit =ai0 + ai1t +Φi1xi ,t−1 +Φi2xi ,t−2 + Λi0x
∗
it

+ Λi1x
∗
i ,t−1 + Λi2x

∗
i ,t−2 + uit

The error correction form (VECMX*) of the VARX∗(2, 2)
specification can be written as

∆xit = ci0 − αiβ
′
i [zi ,t−1 − γi (t − 1)] + Λi0∆x∗it + Γi∆zi ,t−1 + uit ,

where zit = (x′it , x
∗′
it )

′ ,αi is a ki × ri matrix of rank ri and βi is a
(ki + k∗i )× ri matrix of rank ri .

By partitioning βi as βi =
(
β′
ix ,β

′
ix∗

)′
conformable to zit , the ri error

correction terms defined by the above equation can be written as:
β′
i (zit − γi t) = β′

ixxit + β′
ix∗x

∗
it −

(
β′
iγi

)
t,
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Estimation of the individual VARX* models

which allows for the possibility of cointegration both within xit and
between xit and x∗it , and consequently across xit and xjt for i ̸= j .

Assumption: For estimation, x∗it are treated as ‘long-run forcing’ or
I(1) weakly exogenous with respect to the parameters of the
VECMX* model

The VECMX* models are estimated separately for each country
conditional on x∗it , using reduced rank regression, taking into account
the possibility of cointegration both within xit and across xit and x∗it .

This way, the number of cointegrating relations, ri , the speed of
adjustment coeffifients, αi , and the cointegrating vectors βi for each
country model are obtained.
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Solving the GVAR model

Although estimation is done on a country by country basis, the GVAR
model is solved for the world as a whole (in terms of a k × 1 global
variable vector, k =

∑N
i=0 ki ), ...

... taking account of the fact that all the variables are endogenous to
the system as a whole.

Specifically, after estimating the individual country VECMX* models,
the corresponding VARX* models are recovered. Starting from the
estimated country-specific VARX∗ (pi , qi ) models:

xit =ai0 + ai1t +Φi1xi ,t−1 + . . .+Φipixi ,t−pi + Λi0x
∗
it

+ Λi1x
∗
i ,t−1 + . . .+ Λiqix

∗
i ,t−qi

+ uit
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Solving the GVAR model

define zit by zit =

(
xit
x∗it

)
Assuming that pi = qi for ease of exposition, write the VARX∗ (pi , qi )
model for each economy as

Ai0zit = ai0 + ai1t + Ai1zit−1 + . . .+ Aipi zit−pi + uit ,

where Ai0 = (Iki ,−Λi0) , Aij = (Φij ,Λij) for j = 1, . . . , pi .

We can then use the so called link matrices Wi , defined by the
weights wij , to obtain the identity: zit = Wixt ,

where xt = (x′0t , x
′
1t , . . . , x

′
Nt)

′ is the k × 1 vector which collects all
the endogenous variables of the system, and Wi is a (ki + k∗i )× k
matrix.
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Solving the GVAR model

Using the identity zit = Wixt , it follows that

Ai0Wixt = ai0 + ai1t + Ai1Wixt−1 + . . .

+ AipiWixt−pi + uit , for i = 0, 1, 2, . . . ,N,

and these individual models are then stacked to yield the model for xt
given by

G0xt = a0 + a1t+ G1xt−1 + . . .+ Gpxt−p + ut

where

G0 =


A00W0

A10W1
...

AN0WN

 ,Gj =


A0jW0

A1jW1
...

ANjWN

 for j = 1, . . . , p,
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Solving the GVAR model

a0 =


a00
a10
...

aN0

 , a1 =


a01
a11
...

aN1

 ,ut =


u0t
u1t
...

uNt


and p = max pi across all i . In general p = max (max pi ,max qi ).

Since G0 is a known non-singular matrix that depends on the weights
and parameter estimates, premultiplying the stacked model by G−1

0 ,
the GVAR(p) model is obtained as

xt = b0 + b1t+ F1xt−1 + . . .+ Fpxt−p + εt ,

where
b0 = G−1

0 a0,b1 = G−1
0 a1,

Fj = G−1
0 Gj , j = 1, . . . , p, εt = G−1

0 ut .
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Solving the GVAR model

The GVAR(p) can be solved recursively and used for a variety of
purposes.

There are no restrictions placed on the covariance matrix
Σε = E (εtε

′
t), unless one specifically decides to do so.

The initial VARX∗ (pi , qi ) model can also be extended to include
common factors representing global variables, dt , such as oil prices.
Wweak exogeneity is also assumed for global variables.
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Part 2:

Theoretical Justification of the

GVAR Approach

Based on Chudik and Pesaran (2016)
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Approximation to a Global Factor Model

A first attempt at a theoretical justification of the GVAR approach
was provided by Dees et al. (2007).

The authors derived the VARX∗ (pi , qi ) model as an approximation to
a global factor model.

Their starting point is the following canonical global factor model
(abstracting from deterministic terms and observed factors):

xit = Γi ft + ξit , for i = 1, 2, . . . ,N (1)

For each i ,Γi is a ki ×m matrix of factor loadings, assumed to be
uniformly bounded (∥Γi∥ < K < ∞), and ξit is a ki × 1 vector of
country-specific effects.
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Approximation to a Global Factor Model

Factors and the country effects are assumed to satisfy

∆ft = Λf (L)ηft , ηft ∼ IID (0, Im) (2)

∆ξit = Ξi (L)uit ,uit ∼ IID (0, Iki ) , for i = 1, 2, . . . ,N (3)

where Λf (L) =
∑∞

ℓ=0 Λf ℓL
ℓ, Ξi (L) =

∑∞
ℓ=0ΞiℓL

ℓ, and the coefficient
matrices Λf ℓ and Ξiℓ, for i = 1, 2, . . . ,N, are uniformly absolute
summable, which ensures the existence of Var (∆ft) and Var (∆ξit).
In addition, [Ξi (L)]

−1 is assumed to exist.

Under these assumptions, after first differencing (1) and using (3),
they obtain:

[Ξi (L)]
−1 (1− L) (xit − Γi ft) = uit (4)
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Approximation to a Global Factor Model

Using the approximation:

(1− L) [Ξi (L)]
−1 ≈

pi∑
ℓ=0

ΦiℓL
ℓ = Φi (L, pi ) , (5)

they further obtain the following approximate VAR (pi ) model with
factors:

Φi (L, pi ) xit ≈ Φi (L, pi )Γi ft + uit (6)

for i = 1, 2, . . . ,N. Note that lags of other units do not feature in
(6), and the errors, uit , are assumed to be cross-sectionally
independently distributed.

Unobserved common factors in (6) can be estimated by linear
combinations of cross-section averages of observable variables, xit .

16 / 34



Approximation to a Global Factor Model

Let W̃i be the k × k∗ matrix of country-specific weights and assume
that it satisfies the granularity conditions given by:∥∥∥W̃i

∥∥∥ < KN− 1
2 , for all i (7)∥∥∥W̃ij

∥∥∥∥∥∥W̃i

∥∥∥ < KN− 1
2 , for all i , j (8)

where W̃ij are the blocks in the partitioned form of

W̃i =
(
W̃′

i1, W̃
′
i2, . . . , W̃

′
iN

)′
, and the constant K < ∞ does not

depend on i , j or N.
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Approximation to a Global Factor Model

Taking cross-section averages of xit given by (1) yields

x∗it = W̃′
ixt = Γ∗i ft + ξ∗it (9)

where ∥Γ∗i ∥ =
∥∥∥W̃′

iΓ
∥∥∥ ≤

∥∥∥W̃′
i

∥∥∥ ∥Γ∥ < K ,Γ =
(
Γ′1,Γ

′
2, . . . ,Γ

′
N

)′
, and

ξ∗it satisfies

∆ξ∗it =
N∑
j=1

W̃′
ij∆ξit =

N∑
j=1

W̃′
ijΞi (L)uit

Assuming that ∆ξit , i = 1, 2, ...,N, are covariance stationary and
weakly cross-sectionally dependent, they show that for each
t,∆ξ∗it

q.m.→ 0 as N → ∞, which implies ξ∗it
q.m.→ ξ∗i .
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Approximation to a Global Factor Model

It follows that under the additional condition that Γ∗i has a full
column rank,

ft
q.m.→

(
Γ∗′i Γ

∗
i

)−1
Γ∗i (x

∗
it − ξ∗i )

as N → ∞, which justifies using (1, x∗it)
′ as proxies for the unobserved

common factors.

Thus, for N sufficiently large, they obtain the following
country-specific VAR models augmented with x∗it :

Φi (L, pi )
(
xit − δ̃i − Γ̃ix

∗
it

)
≈ uit (10)

where δ̃i and Γ̃i are given in terms of ξ∗i and Γ∗i . Equation (10)
motivates the use of VARX* conditional country models as an
approximation to a global factor model.
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Approximating Factor-Augmented Stationary High
Dimensional VARs

Chudik and Pesaran (2011) consider the conditions on the unknown
parameters of a high-dimensional VAR model that would deliver
individual VARX* models when N is large.

In particular, they consider the following factor augmented
high-dimensional VAR model:

(xt − Γft) = Θ(xt−1 − Γft−1) + ut (11)

where xt is k × 1 vector of endogenous variables, Γ is a k ×m matrix
of factor loadings and ft is an m × 1 covariance stationary process of
unobserved common factors.

To simplify the exposition, the lag order (p) is set to unity.
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Approximating Factor-Augmented Stationary High
Dimensional VARs

The authors assume that ϱ(ΘΘ′) < 1− ϵ, where ϵ > 0 is an arbitrary
small constant that does not depend on N, and ut is weakly
cross-sectionally dependent such that ∥E (utu′t)∥ = ∥Σu∥ < K .

The condition that the spectral radius of ΘΘ′ is below and bounded
away from unity is a slightly stronger requirement than the usual
stationarity condition that assumes the eigenvalues of Θ lie within the
unit circle.

The stronger condition is needed to ensure that variances exist when
N → ∞ (see an illustrative example in Chudik and Pesaran (2016)).
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Approximating Factor-Augmented Stationary High
Dimensional VARs

Similarly, as in Dees et al. (2007), it is assumed in (11) that factors
are included in the VAR model in an additive way so that xt can be
written as:

xt = Γft + ξt (12)

where ξt = (Ik −ΘL)−1ut , and the existence of the inverse of
(Ik −ΘL) is ensured by the assumption on ϱ(ΘΘ′) above. One could
also consider the alternative factor augmentation setup:

xt = Θxt−1 + Γft + ut (13)

where factors are added to the errors of the VAR model, instead of
(11), where deviations of xt from the factors are modeled as a VAR.
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Approximating Factor-Augmented Stationary High
Dimensional VARs

For any set of weights represented by the k × k∗ matrix W̃i, we
obtain (using (12))

x∗it = W̃′
ixt = Γ∗i ft + ξ∗it

where Γ∗i = W̃′
iΓ and

ξ∗it = W̃′
i (Ik −ΘL)−1ut

Chudik and Pesaran (2011) show that if W̃i satisfies (7), then∥∥∥E (ξ∗itξ∗′it )∥∥∥ =

∥∥∥∥∥
∞∑
ℓ=0

W̃iΘ
ℓE (ut−ℓu

′
t−ℓ)Θ

ℓW̃i

∥∥∥∥∥
≤

∥∥∥W̃i

∥∥∥2 ∥Σu∥
∞∑
ℓ=0

∥∥∥Θℓ
∥∥∥2

= O(N−1)

(14)
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Approximating Factor-Augmented Stationary High
Dimensional VARs

where
∥∥∥W̃i

∥∥∥2 = O(N−1) by (7), ∥Σu∥ < K by the weak error (ut)

cross-section dependence assumption and
∑∞

ℓ=0 ∥Θℓ∥2 < K by the
assumption on the spectral radius of ϱ(ΘΘ′).

Equation (14) establishes that ξ∗it
q.m.→ 0 (uniformly in i and t) as

N,T
j→∞. It now follows that

x∗it − Γ∗i ft
q.m.→ 0, as N,T

j→∞ (15)

which confırms the well-known result that only strong cross-section
dependence can survive large N aggregation with granular weights.
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Approximating Factor-Augmented Stationary High
Dimensional VARs

Therefore, the unobserved common factors can be approximated by
cross-section averages x∗t in this dynamic setting, provided that Γ∗i
has full column rank.

Now it is easy to see what additional requirements are needed on the
coefficient matrix Θ to obtain country VARX* models when N is
large.

The model for the country-specific variables, xit , from the system
(11) is given by:

xit = Θiixit−1+
∑

j=1,j ̸=i

Θij (xj ,t−1 − Γj ft)+Γi ft−Θ′
iΓi ft−1+uit (16)

25 / 34



Approximating Factor-Augmented Stationary High
Dimensional VARs

where Θij are appropriate partitioned submatrices of

Θ =


Θ11 Θ12 · · · Θ1N

Θ21 Θ22 Θ2N
...

. . .
...

ΘN1 ΘN2 · · · ΘNN


Suppose now that ∥Θij∥ < K

N , for all i ̸= j

This assumption implies that the matrix
Θ−i = (Θi1,Θi2, . . . ,Θi ,i−1, 0,Θi ,i+1, . . . ,ΘiN)

′ satisfies the
granularity condition (7), in particular ∥Θ−i∥2 < KN−1, and using
(14) but with Θ−i instead of W̃i , we obtain:
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Approximating Factor-Augmented Stationary High
Dimensional VARs

∑
j=1,j ̸=i

Θij (xj ,t−1 − Γj ft)
q.m.→ 0 as N → ∞ (17)

Finally, substituting (15) and (17) in (16) we obtain the
country-specific VARX*(1, 1) model

xit −Θiixit−1 − Λi0x
∗
t − Λi1x

∗
t−1 − uit

q.m.→ 0

uniformly in i , and as N → ∞
(18)

where Λi0 = Γi
(
Γ∗′Γ∗

)−1
Γ∗, and Λi1 = Θ′

iΓi
(
Γ∗′Γ∗

)−1
Γ∗

The requirement ∥Θij∥ < K
N , for all i ̸= j , with the remaining

assumptions are thus sufficient to obtain the VARX∗ (pi , qi ) models
when N is sufficiently large.
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Part 3:

Additional Econometric Considerations

Please refer to the Econometrics Appendix
of the GVAR User Guide for mathematical details
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Specification Tests

Before solving the GVAR model, a number of tests can be performed to
ensure that the model is well-specified and that the assumptions (broadly)
hold. Those include:

Unit root tests: to test the integration properties of all variables
(domestic, foreign, and global). This can be done using standard
ADF unit root t-statistics, or those based on weighted symmetric
estimation of ADF type regressions, among others.

Residual serial correlation tests: The residuals of the individual
VARX* models are assumed to be serially uncorrelated. This can be
formally tested using an F-version of the familiar Lagrange Multiplier
(LM) test.
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Specification Tests

Tests of Co-trending restrictions: to test of whether the
cointegrating relations are trended. This can be done using
likelihood-ratio tests.

Tests of overidentifying restrictions on the cointegrating
vectors: One may wish to incorporate long-run structural
relationships to develop a global model with a theoretically coherent
foundation. This can be done by imposing overidentying restrictions,
which can be tested for using likelihood-ratio tests.

Weak Exogeneity Tests: The weak exogeneity assumption can be
formally tested via a test of the joint significance of the estimated
error correction terms in auxiliary equations for the country-specific
foreign variables
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Impulse Response Analysis

Impulse responses refer to the time profile of the effects of
variable-specific shocks or identified shocks on the future states of
a dynamical system and thus, on all the variables in the model.

The impulse responses of shocks to specific variables considered for
the GVAR model are the generalized impulse response functions
(GIRFs)

Structural generalized impulse response functions (SGIRFs) and
orthogonalized impulse response functions (OIRFs) can also be
computed for shocks identified to a single country and to all
countries, respectively.
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Forecast Error Variance Decomposition

Traditionally the forecast error variance decomposition of a VAR
model is performed on a set of orthogonalized shocks, whereby the
contributions of the orthogonalized innovations to the mean square
errors of the model’s forecasts are calculated.

In the GVAR model, the shocks are not orthogonal, so an alternative
approach is to compute a generalized forecast error variance
decomposition (GFEVD) that is invariant to the ordering of the
variables.

Similarly to impulse responses, In the cases of structural identification
to a single country and to all countries, one can perform structural
generalized forecast error variance decomposition (SGFEVD)
and orthogonalized forecast error varaiance decomposition
(OFEVD) respectively.
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Next session:

Computer Lab: Specification and Estimation
of a GVAR Model
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