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Part 1:
The GVAR Modeling Framework
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A simple VARX* structure

@ At the core of the GVAR modelling framework lies a set of individual
VARX* models, combined in such a way to give rise to the global
VAR model.

@ Consider a set of countries i = 0,1,2,..., N; with country 0 taken as
the reference country.

@ For country 7, abstracting from deterministics and higher order lags,
consider the VARX*(1,1) structure:

* *
Xit = ®ixj -1 + NioXjy + NiaXj ;1 + Ui,

X;: : ki x 1 vector of domestic variables

Xj, © ki x 1 vector of foreign variables

* f— N .. . . —
o where xj, = > "o wiiXje, wii = 0,
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A simple VARX* structure

e with wjj,j =0,1,..., N a set of weights such that ZJ-N:() wij =1,

@ and uj; are cross sectionally weakly correlated such that
uj = Zszo wijuje £0,as N = 0 (where £ denotes convergence in
probability).

@ The domestic and foreign variable vectors could contain, for example,
the following variables:

Yit ylt
Xjt = AI;lt s th = Aé);kt
*

Pit Pit
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A simple VARX* structure

@ where
Yit = In (GDP,'t/CPI,'t),

Apit = pit — pit—1, pir = In(CPlit),
pS =0.25In (1 + R,-f/lOO) ,

@ GDP;; is the nominal gross domestic product, CPl;; the consumer
price index, R,-f is the annualized short rate, and

* N
Yie = Li—oWijYjt;
* N
Apj, = Zj:OWIjApjta

Sx _ N )
Pt = Lj=oWiiPje-
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Estimation of the individual VARX* models

e For country i, consider the VARX*(2,2) structure

*
Xjt =ajo + aj1t + ®Pj1Xj 1 + PioXj 2 + NioXj;
* *
—+ Al’lxht—l + I\i2xl—7t—2 + Ut

@ The error correction form (VECMX*) of the VARX*(2, 2)
specification can be written as

Axiy = cjo — i3} [zi -1 — 7i(t — 1)] 4+ NiogAxf, + T[AzZ; 11 + ug,

where zjy = (x/,, X! ) ,a is a ki x r; matrix of rank r; and 3; is a
(ki + k¥) < r; matrlx of rank r;.

@ By partitioning 3; as B; = (,@?X,Bi-x*)/ conformable to zj;, the r; error
correction terms defined by the above equation can be written as:

/6 (th ) lexlt + ﬁ,x*x,t (ﬁ:%) t>
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Estimation of the individual VARX* models

@ which allows for the possibility of cointegration both within x;; and
between x;: and x7,, and consequently across x;;: and x;; for i # j.
@ Assumption: For estimation, x}, are treated as ‘long-run forcing’ or

I(1) weakly exogenous with respect to the parameters of the
VECMX* model

@ The VECMX* models are estimated separately for each country
conditional on X7, using reduced rank regression, taking into account

the possibility of cointegration both within x;; and across x;; and x7,.
@ This way, the number of cointegrating relations, r;, the speed of

adjustment coeffifients, a;, and the cointegrating vectors 3; for each
country model are obtained.
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Solving the GVAR model

@ Although estimation is done on a country by country basis, the GVAR
model is solved for the world as a whole (in terms of a k x 1 global
variable vector, k = Z;V:o ki ), ...

@ ... taking account of the fact that all the variables are endogenous to
the system as a whole.

@ Specifically, after estimating the individual country VECMX* models,
the corresponding VARX* models are recovered. Starting from the
estimated country-specific VARX™ (p;, g;) models:

*
Xjit =ajo +ajt +Piuxjr1+ ...+ PipXit_p + Niox};

* *
+ Ailxl’,t—l + o e + I\,‘qixi’t_qi + uit
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Solving the GVAR model

o define z;; by z;; = ( if >

it

e Assuming that p; = g; for ease of exposition, write the VARX* (pj, ;)
model for each economy as

Ajoz;r = ajg +ajit +Aj1zjii—1+ ...+ Aipzit—p, + Uiz,

where A,‘Q = (Ik,-7 —/\,‘0), A,J = ((DU,A,J) fOI’_j = ]_, ey P

@ We can then use the so called link matrices W, defined by the
weights w;;, to obtain the identity: z;; = Wx;,

o where x¢ = (Xb;, X, - - -, X)) is the k x 1 vector which collects all
the endogenous variables of the system, and W; is a (k; + k) x k
matrix.
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Solving the GVAR model

@ Using the identity z;; = W;x;, it follows that

AioWix; = ajo + ajrt + AgWixe—1 + ...
+Aip,Wix;_p +uj, fori=0,1,2,..., N,

@ and these individual models are then stacked to yield the model for x;

given by
Gox: =ag+ait+Gixe—1 + ...+ Gpxe—p + ue
@ where
AgpWo AojWo
Go = AIO:W1 ,G; = A”:Wl forj=1,....p,
ANOIWN ANjWN
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Solving the GVAR model

400 ao1 Ut

a10 ail up:
ap = ,d1 = . , U =

ano an1 Uyt

and p = max p; across all i. In general p = max (max p;, max q;).

@ Since Gg is a known non-singular matrix that depends on the weights
and parameter estimates, premultiplying the stacked model by Gal,
the GVAR(p) model is obtained as

Xt = bo + b]_t + F]_th]_ + ...+ prtfp + €4,

where
by = Galao, b, = Gglal,
Fj:GglGj, jzl,...,p,st:Gglut.
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Solving the GVAR model

@ The GVAR(p) can be solved recursively and used for a variety of
purposes.

@ There are no restrictions placed on the covariance matrix
Y. = E(e:€}), unless one specifically decides to do so.

@ The initial VARX* (p;, g;) model can also be extended to include
common factors representing global variables, d;, such as oil prices.
Wweak exogeneity is also assumed for global variables.
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Part 2:

Theoretical Justification of the
GVAR Approach

Based on Chudik and Pesaran (2016)
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Approximation to a Global Factor Model

@ A first attempt at a theoretical justification of the GVAR approach
was provided by Dees et al. (2007).

@ The authors derived the VARX" (p;, g;) model as an approximation to
a global factor model.

@ Their starting point is the following canonical global factor model
(abstracting from deterministic terms and observed factors):

Xt = r,'ft+£i1_-, for i = 1,2,...7N (1)

@ For each i,I; is a kj x m matrix of factor loadings, assumed to be
uniformly bounded (||| < K < o0), and & is a k; x 1 vector of
country-specific effects.
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Approximation to a Global Factor Model

@ Factors and the country effects are assumed to satisfy
Af. = Ne(L)ng,ne ~ 11D (0,1,,) (2)

A§,-t = E,-(L)u,-t,u,-t ~ 11D (0, Iki)? for i = 1,2, ey N (3)

o where Af(L) = > 02, Nrel?, Zi(L) = 3°72, ZieL?, and the coefficient
matrices Asy and =y, for i = 1,2,..., N, are uniformly absolute
summable, which ensures the existence of Var (Af;) and Var (A¢&;;).
In addition, [Z;(L)] " is assumed to exist.

@ Under these assumptions, after first differencing (1) and using (3),

they obtain:
[Z/(D]H (1 = L) (xie — Tif) = ug (4)
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Approximation to a Global Factor Model

@ Using the approximation:

1-0[= z«w (L, pi), (5)
they further obtain the following approximate VAR (p;) model with
factors:

®; (L, pi) xit = ®; (L, pi) [if: + uj; (6)
fori=1,2,...,N. Note that lags of other units do not feature in

(6), and the errors, uj;, are assumed to be cross-sectionally
independently distributed.

@ Unobserved common factors in (6) can be estimated by linear
combinations of cross-section averages of observable variables, x;;.
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Approximation to a Global Factor Model

o Let W, be the k x k* matrix of country-specific weights and assume
that it satisfies the granularity conditions given by:

Hv”v,-( < KN=3, foralli (7)
HW’J _1 ..

— < KN"2, forallij (8)
Wi

@ where Wij are the blocks in the partitioned form of
~ ~ ~ ~ !/
W, = <W§1,W§2, e ,W§N> , and the constant K < oo does not
depend on /,j or N.
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Approximation to a Global Factor Model

e Taking cross-section averages of x;; given by (1) yields
xip = Wixe = [7fe + & 9)

o where ||[]| = Hv”v;.r
i satisfies

IF|| < K,T = (Y}, T,...,T), and

< W

AL, = ZW’ A& = Zw,,_, Juie

@ Assuming that A&, i = 1,2, ..., N, are covariance stationary and
weakly cross—sectionally dependent, they show that for each
t, Af "0 as N — oo, which implies § 5*
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Approximation to a Global Factor Model

o It follows that under the additional condition that I} has a full

column rank,
R () OG- )

as N — oo, which justifies using (1,x%)’ as proxies for the unobserved
common factors.

@ Thus, for N sufficiently large, they obtain the following
country-specific VAR models augmented with x7, :

®; (L, pi) (xit — & — Fixft) ~ Ujt (10)
o where &; and T; are given in terms of £ and I'}. Equation (10)
motivates the use of VARX* conditional country models as an

approximation to a global factor model.
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Approximating Factor-Augmented Stationary High

Dimensional VARs

e Chudik and Pesaran (2011) consider the conditions on the unknown
parameters of a high-dimensional VAR model that would deliver
individual VARX* models when N is large.

@ In particular, they consider the following factor augmented
high-dimensional VAR model:

(Xt — rft) == G)(Xt,1 — rftfl) + u; (11)

@ where x; is k x 1 vector of endogenous variables, T is a k x m matrix
of factor loadings and f; is an m x 1 covariance stationary process of
unobserved common factors.

e To simplify the exposition, the lag order (p) is set to unity.
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Approximating Factor-Augmented Stationary High

Dimensional VARs

@ The authors assume that o(@0’) < 1 — ¢, where € > 0 is an arbitrary
small constant that does not depend on N, and u; is weakly
cross-sectionally dependent such that || E(u:u})| = [|Z,]] < K.

@ The condition that the spectral radius of @@’ is below and bounded
away from unity is a slightly stronger requirement than the usual
stationarity condition that assumes the eigenvalues of @ lie within the
unit circle.

@ The stronger condition is needed to ensure that variances exist when
N — oo (see an illustrative example in Chudik and Pesaran (2016)).
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Approximating Factor-Augmented Stationary High

Dimensional VARs

e Similarly, as in Dees et al. (2007), it is assumed in (11) that factors
are included in the VAR model in an additive way so that x; can be
written as:

Xt = rft + ét (12)

e where & = (I — ©OL) !u,, and the existence of the inverse of
(Ix — OL) is ensured by the assumption on o(®@’) above. One could
also consider the alternative factor augmentation setup:

Xt = eXt_l + rft + ug (13)
@ where factors are added to the errors of the VAR model, instead of

(11), where deviations of x; from the factors are modeled as a VAR.
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Approximating Factor-Augmented Stationary High

Dimensional VARs

@ For any set of weights represented by the k x k* matrix W;, we
obtain (using (12))

X = Wix, = M, + &
where I'* = W/T and
& = Wi(lk — OL) 'u,
o Chudik and Pesaran (2011) show that if W; satisfies (7), then

] S g0
£=0

< V1 e "
/=0

=Oo(NY)
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Approximating Factor-Augmented Stationary High

Dimensional VARs

. 112
@ where HW, = O(N7Y) by (7), ||IZu| < K by the weak error (u;)

cross-section dependence assumption and > ;% [|©%]|2 < K by the
assumption on the spectral radius of o(©@@").

o Equation (14) establishes that ¢, 0 (uniformly in i and t) as
N, T2 00. It now follows that

xi — M, 220,as N, Thoo (15)
@ which confirms the well-known result that only strong cross-section

dependence can survive large N aggregation with granular weights.
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Approximating Factor-Augmented Stationary High

Dimensional VARs

@ Therefore, the unobserved common factors can be approximated by
cross-section averages x; in this dynamic setting, provided that I';
has full column rank.

@ Now it is easy to see what additional requirements are needed on the
coefficient matrix ® to obtain country VARX* models when N is
large.

@ The model for the country-specific variables, x;;, from the system
(11) is given by:

Xjt = @jiXjt—1+ Z ©jj (xjt—1 — jfe)+Tif,—OTifi_1+u; (16)
=Lt
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Approximating Factor-Augmented Stationary High

Dimensional VARs

where ©j; are appropriate partitioned submatrices of

O O -+ Oy
B ©y Oy Oopn
Ont One -+ Oppn

o Suppose now that [|[@;]| < X for all i # j

@ This assumption implies that the matrix
O_; = (9,‘1, @,’2, RN @,",'_1, 0, O,-,,-+1, e @,'N)/ satisfies the
granularity condition (7), in particular |@_;||*> < KN~!, and using
(14) but with ©_; instead of W;, we obtain:
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Approximating Factor-Augmented Stationary High

Dimensional VARs

Z @,J (Xj7t_1 — I'jft) qi)n. 0as N — o0 (17)
=
e Finally, substituting (15) and (17) in (16) we obtain the
country-specific VARX*(1, 1) model

q.m.
Xjt — Ojixjt—1 — Njox; — Njax;_; —ujy =0 (18)
uniformly in /, and as N — oo

where Ajo = T; (r*/r*)_l r and Ay = O;T; (l'*’l'*)_1 re

@ The requirement [|@j| < %, for all i # j, with the remaining
assumptions are thus sufficient to obtain the VARX* (p;, ;) models
when N is sufficiently large.
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Part 3:

Additional Econometric Considerations

Please refer to the Econometrics Appendix
of the GVAR User Guide for mathematical details
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Specification Tests

Before solving the GVAR model, a number of tests can be performed to
ensure that the model is well-specified and that the assumptions (broadly)
hold. Those include:

@ Unit root tests: to test the integration properties of all variables
(domestic, foreign, and global). This can be done using standard
ADF unit root t-statistics, or those based on weighted symmetric
estimation of ADF type regressions, among others.

@ Residual serial correlation tests: The residuals of the individual
VARX* models are assumed to be serially uncorrelated. This can be
formally tested using an F-version of the familiar Lagrange Multiplier
(LM) test.

29/34



Specification Tests

o Tests of Co-trending restrictions: to test of whether the
cointegrating relations are trended. This can be done using
likelihood-ratio tests.

o Tests of overidentifying restrictions on the cointegrating
vectors: One may wish to incorporate long-run structural
relationships to develop a global model with a theoretically coherent
foundation. This can be done by imposing overidentying restrictions,
which can be tested for using likelihood-ratio tests.

o Weak Exogeneity Tests: The weak exogeneity assumption can be
formally tested via a test of the joint significance of the estimated
error correction terms in auxiliary equations for the country-specific
foreign variables
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Impulse Response Analysis

@ Impulse responses refer to the time profile of the effects of
variable-specific shocks or identified shocks on the future states of
a dynamical system and thus, on all the variables in the model.

@ The impulse responses of shocks to specific variables considered for
the GVAR model are the generalized impulse response functions
(GIRFs)

e Structural generalized impulse response functions (SGIRFs) and
orthogonalized impulse response functions (OIRFs) can also be
computed for shocks identified to a single country and to all
countries, respectively.
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Forecast Error Variance Decomposition

o Traditionally the forecast error variance decomposition of a VAR
model is performed on a set of orthogonalized shocks, whereby the
contributions of the orthogonalized innovations to the mean square
errors of the model's forecasts are calculated.

@ In the GVAR model, the shocks are not orthogonal, so an alternative
approach is to compute a generalized forecast error variance
decomposition (GFEVD) that is invariant to the ordering of the
variables.

@ Similarly to impulse responses, In the cases of structural identification
to a single country and to all countries, one can perform structural
generalized forecast error variance decomposition (SGFEVD)
and orthogonalized forecast error varaiance decomposition
(OFEVD) respectively.
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Next session:

Computer Lab: Specification and Estimation
of a GVAR Model
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